Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
Sci Rep ; 14(1): 8675, 2024 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622160

RESUMEN

Mitochondria are essential organelles in cellular energy metabolism and other cellular functions. Mitochondrial dysfunction is closely linked to cellular damage and can potentially contribute to the aging process. The purpose of this study was to investigate the subcellular structure of mitochondria and their activities in various cellular environments using super-resolution stimulated emission depletion (STED) nanoscopy. We examined the morphological dispersion of mitochondria below the diffraction limit in sub-cultured human primary skin fibroblasts and mouse skin tissues. Confocal microscopy provides only the overall morphology of the mitochondrial membrane and an indiscerptible location of nucleoids within the diffraction limit. Conversely, super-resolution STED nanoscopy allowed us to resolve the nanoscale distribution of translocase clusters on the mitochondrial outer membrane and accurately quantify the number of nucleoids per cell in each sample. Comparable results were obtained by analyzing the translocase distribution in the mouse tissues. Furthermore, we precisely and quantitatively analyzed biomolecular distribution in nucleoids, such as the mitochondrial transcription factor A (TFAM), using STED nanoscopy. Our findings highlight the efficacy of super-resolution fluorescence imaging in quantifying aging-related changes on the mitochondrial sub-structure in cells and tissues.


Asunto(s)
Mitocondrias , Rayos Ultravioleta , Humanos , Animales , Ratones , Microscopía Fluorescente/métodos , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Células HeLa
2.
Clin Exp Vaccine Res ; 13(1): 21-27, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38362373

RESUMEN

Chronic infectious diseases refer to diseases that require a long period of time from onset to cure or death, the use of therapeutic vaccines has recently emerged to eradicate diseases. Currently, clinical research is underway to develop therapeutic vaccines for chronic infectious diseases based on various vaccine formulations, and the recent success of the messenger RNA vaccine platform and efforts to apply it to therapeutic vaccines are having a positive impact on conquering chronic infectious diseases. However, since research on the development of therapeutic vaccines is still relatively lacking compared to prophylactic vaccines, there is a need to focus more on the development of therapeutic vaccines to overcome threats to human health caused by chronic infectious diseases. In order to accelerate the development of therapeutic vaccines for chronic infectious diseases in the future, it is necessary to establish a clear concept of therapeutic vaccines suitable for the characteristics of each chronic infectious disease, as well as standardize vaccine effectiveness evaluation methods, secure standards/reference materials, and simplify the vaccine approval procedure.

3.
J Med Virol ; 95(12): e29309, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38100632

RESUMEN

The E6 and E7 proteins of specific subtypes of human papillomavirus (HPV), including HPV 16 and 18, are highly associated with cervical cancer as they modulate cell cycle regulation. The aim of this study was to investigate the potential antitumor effects of a messenger RNA-HPV therapeutic vaccine (mHTV) containing nononcogenic E6 and E7 proteins. To achieve this, C57BL/6j mice were injected with the vaccine via both intramuscular and subcutaneous routes, and the resulting effects were evaluated. mHTV immunization markedly induced robust T cell-mediated immune responses and significantly suppressed tumor growth in both subcutaneous and orthotopic tumor-implanted mouse model, with a significant infiltration of immune cells into tumor tissues. Tumor retransplantation at day 62 postprimary vaccination completely halted progression in all mHTV-treated mice. Furthermore, tumor expansion was significantly reduced upon TC-1 transplantation 160 days after the last immunization. Immunization of rhesus monkeys with mHTV elicited promising immune responses. The immunogenicity of mHTV in nonhuman primates provides strong evidence for clinical application against HPV-related cancers in humans. All data suggest that mHTV can be used as both a therapeutic and prophylactic vaccine.


Asunto(s)
Proteínas Oncogénicas Virales , Infecciones por Papillomavirus , Vacunas contra Papillomavirus , Neoplasias del Cuello Uterino , Humanos , Femenino , Animales , Ratones , Virus del Papiloma Humano , Proteínas Oncogénicas Virales/genética , Infecciones por Papillomavirus/prevención & control , ARN Mensajero/genética , Proteínas E7 de Papillomavirus/genética , Ratones Endogámicos C57BL , Vacunación/métodos , Inmunización , Neoplasias del Cuello Uterino/prevención & control
4.
Biomedicines ; 11(4)2023 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-37189708

RESUMEN

Activated hepatic stellate cells (HSCs) play a detrimental role in liver fibrosis progression. Natural killer (NK) cells are known to selectively recognize abnormal or transformed cells via their receptor activation and induce target cell apoptosis and, therefore, can be used as a potential therapeutic strategy for liver cirrhosis. In this study, we examined the therapeutic effects of NK cells in the carbon tetrachloride (CCl4)-induced liver cirrhosis mouse model. NK cells were isolated from the mouse spleen and expanded in the cytokine-stimulated culture medium. Natural killer group 2, member D (NKG2D)-positive NK cells were significantly increased after a week of expansion in culture. The intravenous injection of NK cells significantly alleviated liver cirrhosis by reducing collagen deposition, HSC marker activation, and macrophage infiltration. For in vivo imaging, NK cells were isolated from codon-optimized luciferase-expressing transgenic mice. Luciferase-expressing NK cells were expanded, activated and administrated to the mouse model to track them. Bioluminescence images showed increased accumulation of the intravenously inoculated NK cells in the cirrhotic liver of the recipient mouse. In addition, we conducted QuantSeq 3' mRNA sequencing-based transcriptomic analysis. From the transcriptomic analysis, 33 downregulated genes in the extracellular matrix (ECM) and 41 downregulated genes involved in the inflammatory response were observed in the NK cell-treated cirrhotic liver tissues from the 1532 differentially expressed genes (DEGs). This result indicated that the repetitive administration of NK cells alleviated the pathology of liver fibrosis in the CCl4-induced liver cirrhosis mouse model via anti-fibrotic and anti-inflammatory mechanisms. Taken together, our research demonstrated that NK cells could have therapeutic effects in a CCl4-induced liver cirrhosis mouse model. In particular, it was elucidated that extracellular matrix genes and inflammatory response genes, which were mainly affected after NK cell treatment, could be potential targets.

5.
Int J Mol Sci ; 24(3)2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36769088

RESUMEN

Improved therapeutic strategies are required to minimize side effects associated with radioiodine gene therapy to avoid unnecessary damage to normal cells and radiation-induced secondary malignancies. We previously reported that codon-optimized sodium iodide symporter (oNIS) enhances absorption of I-131 and that the brahma-associated gene 1 bromodomain (BRG1-BRD) causes inefficient DNA damage repair after high-energy X-ray therapy. To increase the therapeutic effect without applying excessive radiation, we considered the combination of oNIS and BRG1-BRD as gene therapy for the most effective radioiodine treatment. The antitumor effect of I-131 with oNIS or oNIS+BRD expression was examined by tumor xenograft models along with functional assays at the cellular level. The synergistic effect of both BRG1-BRD and oNIS gene overexpression resulted in more DNA double-strand breaks and led to reduced cell proliferation/survival rates after I-131 treatment, which was mediated by the p53/p21 pathway. We found increased p53, p21, and nucleophosmin 1 (NPM1) in oNIS- and BRD-expressing cells following I-131 treatment, even though the remaining levels of citrulline and protein arginine deiminase 4 (PAD4) were unchanged at the protein level.


Asunto(s)
Radioisótopos de Yodo , Simportadores , Humanos , Línea Celular Tumoral , Radioisótopos de Yodo/uso terapéutico , Radioisótopos de Yodo/metabolismo , Simportadores/genética , Simportadores/metabolismo , Proteína p53 Supresora de Tumor/genética
6.
Int J Mol Sci ; 24(1)2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36614294

RESUMEN

Glioblastoma is the most common and fatal primary glioma and has a severe prognosis. It is a challenge for neurosurgeons to remove brain tumor tissues completely by resection. Meanwhile, fluorescence-guided surgery (FGS) is a technique used in glioma surgery to enhance the visualization of tumor edges to clarify the extent of tumor resection. Indocyanine green (ICG) is the only FDA-approved NIR fluorescent agent. It non-covalently binds to human serum albumin (HSA). Secreted protein acidic and rich in cysteine (SPARC) is an extracellular glycoprotein expressed in gliomas and binds to albumin, suggesting that it plays an important role in tumor uptake of the ICG-HSA complex. Here we demonstrate the binding properties of HSA or SPARC to ICG using surface plasmon resonance and saturation binding assay. According to in vitro and in vivo studies, the results showed that the uptake of ICG-HSA complex was higher in SPARC-expressing glioblastoma cell line and tumor region compared with the uptake of free ICG. Here, we visualized the SPARC-dependent uptake of ICG and ICG-HSA complex in U87MG. Our results demonstrated that the ICG-HSA complex is likely to be used as an efficient imaging agent targeting SPARC-expressing tumors, especially glioblastoma.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Imagen Óptica , Cirugía Asistida por Computador , Humanos , Cisteína , Glioblastoma/diagnóstico por imagen , Glioblastoma/cirugía , Verde de Indocianina/química , Imagen Óptica/métodos , Osteonectina/metabolismo , Albúmina Sérica Humana/metabolismo , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/cirugía , Cirugía Asistida por Computador/métodos
7.
Theranostics ; 12(17): 7509-7531, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36438494

RESUMEN

Lipid nanoparticles (LNPs) have been one of the most successful nano-delivery vehicles that enable efficient delivery of cytotoxic chemotherapy agents, antibiotics, and nucleic acid therapeutics. During the coronavirus disease (COVID-19) pandemic, LNP-based COVID-19 messenger RNA (mRNA) vaccines from Pfizer/BioNTech and Moderna have been successfully developed, resulting in global sales of $37 billion and $17.7 billion, respectively, in 2021. Based on this success, the development of multiple LNP-based RNA therapeutics is gaining momentum due to its potential in vaccines and therapeutics for various genetic diseases and cancers. Furthermore, imaging techniques can be utilized to evaluate the pharmacokinetics and pharmacodynamics (PK/PD) effects, which helps target discovery and accelerates the development of LNP-based mRNA therapies. A thorough introduction and explanation of the components of LNPs and its functions along with various production methods of formulating LNPs are provided in this review. Furthermore, recent advances in LNP-based RNA therapeutics in clinics and clinical trials are explored. Additionally, the evaluation of PK/PD of LNPs for RNA delivery and the current and potential roles in developing LNP-based mRNA pharmaceutics through imaging techniques will be discussed.


Asunto(s)
COVID-19 , ARN , Humanos , Lípidos , COVID-19/terapia , ARN Mensajero/genética
8.
Theranostics ; 12(14): 6380-6394, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36168637

RESUMEN

Rationale: [18F]fluorodeoxyglucose-positron emission tomography ([18F]FDG-PET) has been widely used as an imaging technique to measure interscapular brown adipose tissue (iBAT) activity. However, it is challenging to obtain iBAT-specific images using [18F]FDG-PET because increased uptake of [18F]FDG is observed in tumors, muscle, and inflamed tissues. Uncoupling protein 1 (UCP1) in the mitochondrial membrane, a well-known molecular marker of BAT, has been proposed as a useful BAT imaging marker. Recently, the UCP1 ThermoMouse was developed as a reporter mouse for monitoring UCP1 expression and investigating BAT activation. In addition, Translocator protein-18 kDa (TSPO) located in the outer mitochondrial membrane is also overexpressed in BAT, suggesting that TSPO-targeting PET has potential for iBAT imaging. However, there are no studies monitoring BAT using TSPO-targeting PET probes in the UCP1 ThermoMouse. Moreover, the non-invasive Cerenkov luminescence imaging (CLI) using Cerenkov radiation from the PET probe has been proposed as an alternative option for PET as it is less expensive and user-friendly. Therefore, we selected [18F]fm-PBR28-d 2 as a TSPO-targeting PET probe for iBAT imaging to evaluate the usefulness of CLI in the UCP1 ThermoMouse. Methods: UCP1 ThermoMouse was used to monitor UCP1 expression. Western blotting and immunohistochemistry were performed to measure the level of protein expression. [18F]fm-PBR28-d 2 and [18F]FDG were used as radioactive probes for iBAT imaging. PET images were acquired with SimPET, and optical images were acquired with IVIS 100. Results: UCP1 ThermoMouse showed that UCP1 and TSPO expressions were correlated in iBAT. In both PET and CLI, the TSPO-targeting probe [18F]fm-PBR28-d 2 was superior to [18F]FDG for acquiring iBAT images. The high molar activity of the probe was essential for CLI and PET imaging. We tested the feasibility of TSPO-targeting probe under cold exposure by imaging with TSPO-PET/CLI. Both signals of iBAT were clearly increased after cold stimulation. Under prolonged isoflurane anesthesia, TSPO-targeting images showed higher signals from iBAT in the short-term than in long-term groups. Conclusion: We demonstrated that TSPO-PET/CLI reflected UCP1 expression in iBAT imaging better than [18F]FDG-PET/CLI under the various conditions. Considering convenience and cost, TSPO-CLI could be used as an alternative TSPO-PET technique for iBAT imaging.


Asunto(s)
Fluorodesoxiglucosa F18 , Isoflurano , Tejido Adiposo Pardo/diagnóstico por imagen , Tejido Adiposo Pardo/metabolismo , Animales , Fluorodesoxiglucosa F18/metabolismo , Isoflurano/metabolismo , Luminiscencia , Ratones , Tomografía de Emisión de Positrones/métodos , Proteína Desacopladora 1/metabolismo
9.
Int J Mol Sci ; 23(16)2022 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-36012530

RESUMEN

Immune checkpoint inhibitors (ICIs) are widely used in cancer immunotherapy, requiring effective methods for response monitoring. This study evaluated changes in 18F-2-fluoro-2-deoxy-D-glucose (FDG) and 18F-fluorothymidine (FLT) uptake by tumors following ICI treatment as potential imaging biomarkers in mice. Tumor uptakes of 18F-FDG and 18F-FLT were measured and compared between the ICI treatment and control groups. A combined imaging index of glucose-thymidine uptake ratio (GTR) was defined and compared between groups. In the ICI treatment group, tumor growth was effectively inhibited, and higher proportions of immune cells were observed. In the early phase, 18F-FDG uptake was higher in the treatment group, whereas 18F-FLT uptake was not different. There was no difference in 18F-FDG uptake between the two groups in the late phase. However, 18F-FLT uptake of the control group was markedly increased compared with the ICI treatment group. GTR was consistently higher in the ICI treatment group in the early and late phases. After ICI treatment, changes in tumor cell proliferation were observed with 18F-FLT, whereas 18F-FDG showed altered metabolism in both tumor and immune cells. A combination of 18F-FLT and 18F-FDG PET, such as GTR, is expected to serve as a potentially effective imaging biomarker for monitoring ICI treatment.


Asunto(s)
Fluorodesoxiglucosa F18 , Neoplasias , Animales , Biomarcadores , Didesoxinucleósidos , Fluorodesoxiglucosa F18/uso terapéutico , Glucosa/uso terapéutico , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Ratones , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico , Tomografía de Emisión de Positrones/métodos , Radiofármacos/uso terapéutico , Timidina/farmacología
10.
Nucl Med Biol ; 114-115: 135-142, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35501237

RESUMEN

INTRODUCTION: Claudin-3 (CLDN3), a tight junction protein, regulates cell-to-cell interactions in epithelial or endothelial cell sheets. During tumorigenesis, epithelial cells are transformed, and tumor cells proliferate through out-of-plane division, resulting in external exposure of CLDN3. Since alterations of CLDN3 expression are associated with cancer progression and higher CLDN3 expression is observed in most ovarian cancers, we tested the feasibility of using a CLDN3-specific antibody as a novel imaging tracer. MATERIALS AND METHODS: After reducing the CLDN3-specific antibodies to expose the -SH groups, click chemistry was used to conjugate the radioactive isotope 111In or the fluorescent protein FNR648. Human ovarian cancer OVCAR-3 and glioblastoma U87MG cells were used as CLDN3-positive and -negative cells. Flow cytometry was used to determine the CLDN3 IgG1 monoclonal antibody binding to both cell lines. OVCAR-3 cells were injected subcutaneously into mice to establish a xenograft model. 111In-labeled CLDN3 antibodies (370 kBq/50 µL) were administered intravenously into mice. After 24 h, organs, including tumors, were excised and measured with a γ-counter. Images were acquired with the IVIS optical imaging system and SPECT/CT. RESULTS: The labeling efficiency of NOTA-111In and antibody-NOTA-111In was 98.52% and 100%, respectively. FNR648-labeled CLDN3 antibody bound to the cell surface of OVCAR-3 and U87MG with 83.4% and 5.7% specificity, respectively. In OVCAR-3 tumor xenografted mice, CLDN3 IgG1 antibody showed a 2.5-fold higher tumor uptake (20.4 ± 7.4% ID/g) than human IgG1 (8.8 ± 2.6% ID/g) at 24 h post injection. The CLDN3 antibody fluorescence signal in the tumor peaked at 24 h post injection. CONCLUSION: We have successfully conjugated a radioisotope and a fluorescent protein with CLDN3-specific antibodies and verified the specific binding of labeled antibodies to OVCAR-3 tumors in a mouse model. Our data suggested that CLDN3-specific human monoclonal antibodies could be used as a useful theranostic tracer.


Asunto(s)
Neoplasias Ováricas , Humanos , Animales , Ratones , Femenino , Claudina-3 , Neoplasias Ováricas/patología , Anticuerpos Monoclonales , Apoptosis , Línea Celular Tumoral , Inmunoglobulina G
11.
Gastric Cancer ; 25(1): 149-160, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34363529

RESUMEN

BACKGROUND: Although FDG-PET is widely used in cancer, its role in gastric cancer (GC) is still controversial due to variable [18F]fluorodeoxyglucose ([18F]FDG) uptake. Here, we sought to develop a genetic signature to predict high FDG-avid GC to plan individualized PET and investigate the molecular landscape of GC and its association with glucose metabolic profiles noninvasively evaluated by [18F]FDG-PET. METHODS: Based on a genetic signature, PETscore, representing [18F]FDG avidity, was developed by imaging data acquired from thirty patient-derived xenografts (PDX). The PETscore was validated by [18F]FDG-PET data and gene expression data of human GC. The PETscore was associated with genomic and transcriptomic profiles of GC using The Cancer Genome Atlas. RESULTS: Five genes, PLS1, PYY, HBQ1, SLC6A5, and NAT16, were identified for the predictive model for [18F]FDG uptake of GC. The PETscore was validated in independent PET data of human GC with qRT-PCR and RNA-sequencing. By applying PETscore on TCGA, a significant association between glucose uptake and tumor mutational burden as well as genomic alterations were identified. CONCLUSION: Our findings suggest that molecular characteristics are underlying the diverse metabolic profiles of GC. Diverse glucose metabolic profiles may apply to precise diagnostic and therapeutic approaches for GC.


Asunto(s)
Neoplasias Gástricas , Fluorodesoxiglucosa F18 , Glucosa , Proteínas de Transporte de Glicina en la Membrana Plasmática/metabolismo , Humanos , Metaboloma , Tomografía de Emisión de Positrones/métodos , Radiofármacos , Neoplasias Gástricas/diagnóstico por imagen , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo
12.
Nucl Med Mol Imaging ; 55(5): 225-236, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34721715

RESUMEN

Recent advances in immune modulation have made impressive progress in cancer immunotherapy. Because dynamic nature of the immune response often makes it difficult to evaluate therapeutic outcomes, innovative imaging technologies have been developed to enable non-invasive visualization of immune cells and tumors in their microenvironment. This review summarizes the current tumor immunology and describes new innovative imaging methods with great potential to obtain non-invasive real-time insights into the complex functions of the immune system and into the management of cancer immunotherapy.

13.
Eur J Nucl Med Mol Imaging ; 49(1): 110-124, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34783879

RESUMEN

PURPOSE: Translocator protein 18-kDa (TSPO) positron emission tomography (PET) is a valuable tool to detect neuroinflammed areas in a broad spectrum of neurodegenerative diseases. However, the clinical application of second-generation TSPO ligands as biomarkers is limited because of the presence of human rs6971 polymorphism that affects their binding. Here, we describe the ability of a new TSPO ligand, [18F]BS224, to identify abnormal TSPO expression in neuroinflammation independent of the rs6971 polymorphism. METHODS: An in vitro competitive inhibition assay of BS224 was conducted with [3H]PK 11195 using membrane proteins isolated from 293FT cells expressing TSPO-wild type (WT) or TSPO-mutant A147T (Mut), corresponding to a high-affinity binder (HAB) and low-affinity binder (LAB), respectively. Molecular docking was performed to investigate the interaction of BS224 with the binding sites of rat TSPO-WT and TSPO-Mut. We synthesized a new 18F-labeled imidazopyridine acetamide ([18F]BS224) using boronic acid pinacol ester 6 or iodotoluene tosylate precursor 7, respectively, via aromatic 18F-fluorination. Dynamic PET scanning was performed up to 90 min after the injection of [18F]BS224 to healthy mice, and PET imaging data were obtained to estimate its absorbed doses in organs. To evaluate in vivo TSPO-specific uptake of [18F]BS224, lipopolysaccharide (LPS)-induced inflammatory and ischemic stroke rat models were used. RESULTS: BS224 exhibited a high affinity (Ki = 0.51 nM) and selectivity for TSPO. The ratio of IC50 values of BS224 for LAB to that for HAB indicated that the TSPO binding affinity of BS224 has low binding sensitivity to the rs6971 polymorphism and it was comparable to that of PK 11195, which is not sensitive to the polymorphism. Docking simulations showed that the binding mode of BS224 is not affected by the A147T mutation and consequently supported the observed in vitro selectivity of [18F]BS224 regardless of polymorphisms. With optimal radiochemical yield (39 ± 6.8%, decay-corrected) and purity (> 99%), [18F]BS224 provided a clear visible image of the inflammatory lesion with a high signal-to-background ratio in both animal models (BPND = 1.43 ± 0.17 and 1.57 ± 0.37 in the LPS-induced inflammatory and ischemic stroke rat models, respectively) without skull uptake. CONCLUSION: Our results suggest that [18F]BS224 may be a promising TSPO ligand to gauge neuroinflammatory disease-related areas in a broad range of patients irrespective of the common rs6971 polymorphism.


Asunto(s)
Tomografía de Emisión de Positrones , Receptores de GABA , Animales , Proteínas Portadoras , Humanos , Ligandos , Ratones , Simulación del Acoplamiento Molecular , Radiofármacos , Ratas , Receptores de GABA/genética , Receptores de GABA/metabolismo , Receptores de GABA-A
14.
J Gastric Cancer ; 21(2): 191-202, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34234980

RESUMEN

PURPOSE: A near-infrared (NIR) fluorescence imaging is a promising tool for cancer-specific image guided surgery. Human epidermal receptor 2 (HER2) is one of the candidate markers for gastric cancer. In this study, we aimed to synthesize HER2-specific NIR fluorescence probes and evaluate their applicability in cancer-specific image-guided surgeries using an animal model. MATERIALS AND METHODS: An NIR dye emitting light at 800 nm (IRDye800CW; Li-COR) was conjugated to trastuzumab and an HER2-specific affibody using a click mechanism. HER2 affinity was assessed using surface plasmon resonance. Gastric cancer cell lines (NCI-N87 and SNU-601) were subcutaneously implanted into female BALB/c nu (6-8 weeks old) mice. After intravenous injection of the probes, biodistribution and fluorescence signal intensity were measured using Lumina II (Perkin Elmer) and a laparoscopic NIR camera (InTheSmart). RESULTS: Trastuzumab-IRDye800CW exhibited high affinity for HER2 (KD=2.093(3) pM). Fluorescence signals in the liver and spleen were the highest at 24 hours post injection, while the signal in HER2-positive tumor cells increased until 72 hours, as assessed using the Lumina II system. The signal corresponding to the tumor was visually identified and clearly differentiated from the liver after 72 hours using a laparoscopic NIR camera. Affibody-IRDye800CW also exhibited high affinity for HER2 (KD=4.71 nM); however, the signal was not identified in the tumor, probably owing to rapid renal clearance. CONCLUSIONS: Trastuzumab-IRDye800CW may be used as a potential NIR probe that can be injected 2-3 days before surgery to obtain high HER2-specific signal and contrast. Affibody-based NIR probes may require modifications to enhance mobilization to the tumor site.

15.
Pharmaceutics ; 13(3)2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33804176

RESUMEN

Adjuvant CIA09, composed of 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP)-based cationic liposomes and the toll-like receptor 4 agonist de-O-acylated lipooligosaccharide (dLOS), has been shown to enhance antibody and cellular immune responses to varicella-zoster virus (VZV) glycoprotein E (gE), recombinant tuberculosis vaccine antigen, and inactivated Japanese encephalitis vaccine. In this study, we investigated its modes of action using VZV gE as a model antigen. Liposomes adsorbed gE and cooperatively with dLOS promoted endocytosis-mediated cellular uptake of gE by mouse dendritic cells in vitro. CIA09 increased the stability and cellular uptake of the antigen at the muscle site of injection, and induced immune cell recruitment and cytokine and chemokine production, which led to efficient antigen delivery to draining lymph nodes. Mouse bone marrow-derived dendritic cells, pulsed with CIA09-adjuvanted gE, efficiently presented gE to antigen-specific T cells, inducing Th1-type biased immunity, as shown by high IFN-γ production. The data indicate that liposomes and dLOS cooperate in the adjuvant activity of CIA09 by promoting antigen uptake and delivery to lymph nodes as well as antigen presentation to T cells.

16.
Int J Mol Sci ; 21(21)2020 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-33114661

RESUMEN

Cisplatin (cis-diamminedichloroplatinum (II), CDDP) is a chemotherapeutic drug widely used against many solid tumors. A pharmacokinetics study found that CDDP can bind to human serum albumin (HSA), which is the most abundant plasma protein in serum. HSA has the advantage of being a nanocarrier and can accumulate in tumors by passive targeting and active targeting mediated by the secreted protein acidic and rich in cysteine (SPARC). In this study, we investigated the possibility of using a CDDP-HSA complex (HSA-CDDP) as a SPARC-mediated therapeutic agent. To investigate the HSA-dependent therapeutic effect of HSA-CDDP, we used two types of U87MG glioma cells that express SPARC differently. HSA-CDDP was highly taken up in SPARC expressing cells and this uptake was enhanced with exogenous SPARC treatment in cells with low expression of SPARC. The cytotoxicity of HSA-CDDP was also higher in SPARC-expressing cells. In the tumor model, HSA-CDDP showed a similar tumor growth and survival rate to CDDP only in SPARC-expressing tumor models. The biosafety test indicated that HSA-CDDP was less nephrotoxic than CDDP, based on blood markers and histopathology examination. Our findings show that HSA-CDDP has the potential to be a novel therapeutic agent for SPARC-expressing tumors, enhancing the tumor targeting effect by HSA and reducing the nephrotoxicity of CDDP.


Asunto(s)
Antineoplásicos/administración & dosificación , Cisplatino/administración & dosificación , Glioma/tratamiento farmacológico , Enfermedades Renales/prevención & control , Albúmina Sérica Humana/química , Administración Intravenosa , Animales , Antineoplásicos/efectos adversos , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Cisplatino/efectos adversos , Cisplatino/química , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glioma/metabolismo , Humanos , Enfermedades Renales/inducido químicamente , Enfermedades Renales/metabolismo , Masculino , Ratones , Osteonectina/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
17.
Int J Mol Sci ; 21(21)2020 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-33105908

RESUMEN

There has been considerable interest in the clinical use of exosomes as delivery vehicles for treatments as well as for promising diagnostic biomarkers, but the physiological distribution of exosomes must be further elucidated to validate their efficacy and safety. Here, we aimed to develop novel methods to monitor exosome biodistribution in vivo using positron emission tomography (PET) and optical imaging. Exosomes were isolated from cultured mouse breast cancer cells and labeled for PET and optical imaging. In mice, radiolabeled and fluorescently labeled exosomes were injected both via lymphatic and hematogenous metastatic routes. PET and fluorescence images were obtained and quantified. Radioactivity and fluorescence intensity of ex vivo organs were measured. PET signals from exosomes in the lymphatic metastatic route were observed in the draining sentinel lymph nodes. Immunohistochemistry revealed greater exosome uptake in brachial and axillary versus inguinal lymph nodes. Following administration through the hematogenous metastasis pathway, accumulation of exosomes was clearly observed in the lungs, liver, and spleen. Exosomes from tumor cells were successfully labeled with 64Cu (or 68Ga) and fluorescence and were visualized via PET and optical imaging, suggesting that this simultaneous and rapid labeling method could provide valuable information for further exosome translational research and clinical applications.


Asunto(s)
Exosomas , Colorantes Fluorescentes/farmacocinética , Imagen Multimodal/métodos , Animales , Carbocianinas/química , Carbocianinas/farmacocinética , Radioisótopos de Cobre , Vías de Administración de Medicamentos , Exosomas/química , Femenino , Colorantes Fluorescentes/administración & dosificación , Colorantes Fluorescentes/química , Radioisótopos de Galio , Compuestos Heterocíclicos con 1 Anillo/química , Inyecciones Intravenosas , Marcaje Isotópico/métodos , Ratones Endogámicos BALB C , Tomografía de Emisión de Positrones/métodos , Distribución Tisular
18.
Theranostics ; 10(20): 9315-9331, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32802194

RESUMEN

The 18 kDa translocator protein (TSPO) has been proposed as a biomarker for the detection of neuroinflammation. Although various PET probes targeting TSPO have been developed, a highly selective probe for detecting TSPO is still needed because single nucleotide polymorphisms in the human TSPO gene greatly affect the binding affinity of TSPO ligands. Here, we describe the visualization of neuroinflammation with a multimodality imaging system using our recently developed TSPO-targeting radionuclide PET probe [18F]CB251, which is less affected by TSPO polymorphisms. Methods: To test the selectivity of [18F]CB251 for TSPO polymorphisms, 293FT cells expressing polymorphic TSPO were generated by introducing the coding sequences of wild-type (WT) and mutant (Alanine → Threonine at 147th Amino Acid; A147T) forms. Competitive inhibition assay was conducted with [3H]PK11195 and various TSPO ligands using membrane proteins isolated from 293FT cells expressing TSPO WT or mutant-A147T, representing high-affinity binder (HAB) or low-affinity binder (LAB), respectively. IC50 values of each ligand to [3H]PK11195 in HAB or LAB were measured and the ratio of IC50 values of each ligand to [3H]PK11195 in HAB to LAB was calculated, indicating the sensitivity of TSPO polymorphism. Cellular uptake of [18F]CB251 was measured with different TSPO polymorphisms, and phantom studies of [18F]CB251-PET using 293FT cells were performed. To test TSPO-specific cellular uptake of [18F]CB251, TSPO expression was regulated with pCMV-TSPO (or shTSPO)/eGFP vector. Intracranial lipopolysaccharide (LPS) treatment was used to induce regional inflammation in the mouse brain. Gadolinium (Gd)-DOTA MRI was used to monitor the disruption of the blood-brain barrier (BBB) and infiltration by immune cells. Infiltration of peripheral immune cells across the BBB, which exacerbates neuroinflammation to produce higher levels of neurotoxicity, was also monitored with bioluminescence imaging (BLI). Peripheral immune cells isolated from luciferase-expressing transgenic mice were transferred to syngeneic inflamed mice. Neuroinflammation was monitored with [18F]CB251-PET/MR and BLI. To evaluate the effects of anti-inflammatory agents on intracranial inflammation, an inflammatory cytokine inhibitor, 2-cyano-3, 12-dioxooleana-1, 9-dien-28-oic acid methyl ester (CDDO-Me) was administered in intracranial LPS challenged mice. Results: The ratio of IC50 values of [18F]CB251 in HAB to LAB indicated similar binding affinity to WT and mutant TSPO and was less affected by TSPO polymorphisms. [18F]CB251 was specific for TSPO, and its cellular uptake reflected the amount of TSPO. Higher [18F]CB251 uptake was also observed in activated immune cells. Simultaneous [18F]CB251-PET/MRI showed that [18F]CB251 radioactivity was co-registered with the MR signals in the same region of the brain of LPS-injected mice. Luciferase-expressing peripheral immune cells were located at the site of LPS-injected right striatum. Quantitative evaluation of the anti-inflammatory effect of CDDO-Me on neuroinflammation was successfully monitored with TSPO-targeting [18F]CB251-PET/MR and BLI. Conclusion: Our results indicate that [18F]CB251-PET has great potential for detecting neuroinflammation with higher TSPO selectivity regardless of polymorphisms. Our multimodal imaging system, [18F]CB251-PET/MRI, tested for evaluating the efficacy of anti-inflammatory agents in preclinical studies, might be an effective method to assess the severity and therapeutic response of neuroinflammation.


Asunto(s)
Acetamidas/administración & dosificación , Encéfalo/metabolismo , Radioisótopos de Flúor/administración & dosificación , Compuestos Heterocíclicos con 2 Anillos/administración & dosificación , Inflamación/genética , Neuronas/metabolismo , Polimorfismo Genético/genética , Receptores de GABA/genética , Animales , Barrera Hematoencefálica/metabolismo , Línea Celular , Citocinas/genética , Modelos Animales de Enfermedad , Gadolinio/administración & dosificación , Células HEK293 , Humanos , Mediciones Luminiscentes/métodos , Imagen por Resonancia Magnética/métodos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Tomografía de Emisión de Positrones/métodos , Células RAW 264.7 , Radiofármacos/administración & dosificación , Tomografía Computarizada por Rayos X/métodos
19.
Biochem Biophys Res Commun ; 529(3): 707-713, 2020 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-32736696

RESUMEN

Despite improved therapeutic efficacy of the locked nucleic acid (LNA)- and peptide nucleic acid (PNA)-modified antisense microRNAs (anti-miRs), their wider application in clinical practice is still not thoroughly investigated. This study aimed to investigate the stability and therapeutic efficacy of the modified LNA- and PNA-type anti-miRs in a murine prostate cancer model under various treatment conditions. After verifying the anti-cancer potential of anti-miR21 by targeting tumor suppressor PTEN, the potential of the modified LNA- and PNA-type anti-miR21s was compared in vitro and in vivo. We found that PNA-type anti-miR21 showed better stability and therapeutic efficacy in the xenografted mouse tumor model than the LNA-type anti-miR21. Furthermore, PNA-type anti-miR21 treatment showed reduced tumor metastasis. This study may serve as a ground for exploring diverse choices in therapeutic oligonucleotide modification techniques to improve cancer treatment.


Asunto(s)
Antagomirs/uso terapéutico , MicroARNs/genética , Oligonucleótidos/uso terapéutico , Ácidos Nucleicos de Péptidos/uso terapéutico , Neoplasias de la Próstata/terapia , Animales , Antagomirs/genética , Línea Celular Tumoral , Terapia Genética , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Metástasis de la Neoplasia/genética , Metástasis de la Neoplasia/terapia , Oligonucleótidos/genética , Células PC-3 , Ácidos Nucleicos de Péptidos/genética , Neoplasias de la Próstata/genética
20.
Am J Transl Res ; 12(6): 2488-2498, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32655786

RESUMEN

Human serum albumin (HSA) accumulates in tumors by the enhanced permeability and retention (EPR) effect, which is a passive targeting effect in tumors. A recent study showed that secreted protein acidic and rich in cysteine (SPARC), an albumin-binding protein, mediates albumin accumulation in tumors. Arg-Gly-Asp (RGD) is a peptide targeting integrin αvß3, which is highly expressed during tumor angiogenesis. We investigated whether conjugation of RGD to HSA could synergistically enhance tumor targeting. Accumulation of cRGDyK-HSA in integrin αvß3-expressing SK-OV3 cells was observed by confocal microscopy. In SK-OV3 cells overexpressing the albumin binding protein SPARC, cellular uptake of HSA increased, but uptake of cRGDyK-HSA did not. cRGDyK-HSA showed decreased tumor accumulation compared with HSA by positron emission tomography (PET) scanning and biodistribution studies in an SK-OV3 xenograft mouse model. In SK-OV3 tumors, HSA accumulation colocalized with SPARC expression, while cRGDyK-HSA only accumulated in the outer region of the tumor, even though SPARC and integrin αvß3 were expressed within the tumor core. We speculate that cRGDyK conjugation to HSA changes the characteristics of HSA and hinders its tumor-targeting effect. Therefore, HSA should be modified to preserve its native characteristics and enhance the tumor-targeting effects of HSA conjugates.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...